FIBRE GLASS and glass fibre is a kind of syntetic material made from extremely serat kaca yang baik. It is used as a reinforcing agent for many polymer products; the resulting composite material, properly known as fiber-reinforced polymer (FRP) or glass-reinforced plastic (GRP), is called "fiberglass" in popular usage.

Glassmakers throughout history have experimented with glass fibers, but mass manufacture of fiberglass was only made possible with the advent of finer machine-tooling. Pada tahun 1893, Edward Drummond Libbey exhibited a dress at the World's Columbian Exposition incorporating glass fibers with the diameter and texture of silk fibers. What is commonly known as "fiberglass" today, however, was invented in 1938 by Russell Games Slayter of Owens-Corning as a material to be used as insulation. Produk ini dipasarkan dalam perdagangan dengan nama Fiberglas, yang kemudian menjada nama dagang generik.

Glass fiber is formed when thin strands of silica-based or other formulation glass is extruded into many fibers with small diameters suitable for textile processing. Kaca berbeda dengan polimer lain, yakni, it has little crystalline structure (see amorphous solid). The properties of the structure of glass in its soft stage are very much like its properties when spun into fiber. One definition of glass is "an inorganic substance in a condition which is continuous with, and analogous to the liquid state of that substance, but which, as a result of a reversible change in viscosity during cooling, has attained so high a degree of viscosity as to be for all practical purposes rigid." [1]

Teknik pemanasan dan pembentukan kaca menjadi serat yang halus diyakini telah dicoba selama ribuan tahun; however, the concept of using these fibers for textile applications is more recent. Produksi fiberglas untuk komersil yang pertamakali adalah di tahun 1936. Pada tahun 1938, Owens-Illinois Glass Company dan Corning Glass Works bergabung membentuk Owens-Corning Fiberglas Corporation. Until this time all fiberglass had been manufactured as staple. When the two companies joined together to produce and promote fiberglass, they introduced continuous filament glass fibers. [1] Owens-Corning is still the major fiberglass producer in the market today.


Material of textile grade glass fibers is silica, SiO2. In its pure form it exists as a polymer, (SiO2)n. It has no true melting point but softens up to 2000°C, where it starts to degrade. At 1713°C, most of the molecules can move about freely. If the glass is then cooled quickly, they will be unable to form an ordered structure. [2] In the polymer it forms SiO4 groups which are configured as a tetrahedron with the silicon atom at the center, and four oxygen atoms at the corners. These atoms then form a network bonded at the corners by sharing the oxygen atoms.

The vitreous and crystalline states of silica (glass and quartz) have similar energy levels on a molecular basis, also implying that the glassy form is extremely stable. In order to induce crystallization, it must be heated to temperatures above 1200°C for long periods of time. [1]
Molecular Structure of Glass
Molecular Structure of Glass

Although pure silica is a perfectly viable glass and glass fiber, it must be worked with at very high temperatures which is a drawback unless its specific chemical properties are needed. It is usual to introduce impurities into the glass in the form of other materials, to lower its working temperature. These materials also impart various other properties to the glass which may be beneficial in different applications. The first type of glass used for fiber was soda-lime glass or A glass. It was not very resistant to alkali. A new type, E-glass was formed that is alkali free (< 2%) and is an alumino-borosilicate glass [3]. This was the first glass formulation used for continuous filament formation. E-glass still makes up most of the fiberglass production in the world. Its particular components may differ slightly in percentage, but must fall within a specific range. The letter E is used because it was originally for electrical applications. S-glass is a high strength formulation for use when tensile strength is the most important property. C-glass was developed to resist attack from chemicals, mostly acids which destroy E-glass. [3] T-glass is a North American variant of C-glass. A-glass is an industry term for cullet glass, often bottles, made into fiber. AR-glass is alkali resistant glass. Most glass fibers have limited solubility in water but it is very dependent on pH. Chloride ions will also attack and dissolve E-glass surfaces. A recent trend in the industry is to reduce or eliminate the boron content in the glass fibers.

Since E-glass does not really melt but soften, the softening point is defined as , "the temperature at which a 0.55 – 0.77 mm diameter fiber 9.25 inches long, elongates under its own weight at 1 mm/min when suspended vertically and heated at the rate of 5°C per minute". [4] The strain point is reached when the glass has a viscosity of 1014.5 poise. The annealing point, which is the temperature where the internal stresses are reduced to an acceptable commercial limit in 15 minutes, is marked by a viscosity of 1013 poise. [4]


Glass fibers are useful because of their high ratio of surface area to weight. However, the increased surface area makes them much more susceptible to chemical attack.

By trapping air within them, blocks of glass fiber make good thermal insulation, with a thermal conductivity of 0.05 W/m-K.

Glass strengths are usually tested and reported for "virgin" fibers which have just been manufactured. The freshest, thinnest fibers are the strongest and this is thought to be due to the fact that it is easier for thinner fibers to bend. The more the surface is scratched, the less the resulting tenacity is. [3] Because glass has an amorphous structure, its properties are the same along the fiber and across the fiber. [2] Humidity is an important factor in the tensile strength. Moisture is easily absorbed, and can worsen microscopic cracks and surface defects, and lessen tenacity.

In contrast to carbon fiber, glass can undergo more elongation before it breaks. [2]

The viscosity of the molten glass is very important for manufacturing success. During drawing (pulling of the glass to reduce fiber circumference) the viscosity should be relatively low. If it is too high the fiber will break during drawing, however if it is too low the glass will form droplets rather than drawing out into fiber.

Manufacturing processes


There are two main types of glass fibre manufacture and two main types of glass fibre product. First, fiber is made either from a direct melt process or a marble remelt process. Both start with the raw materials in solid form. The materials are mixed together and melted in a furnace. Then, for the marble process, the molten material is sheared and rolled into marbles which are cooled and packaged. The marbles are taken to the fiber manufacturing facility where they are inserted into a can and remelted. The molten glass is extruded to the bushing to be formed into fiber. In the direct melt process, the molten glass in the furnace goes right to the bushing for formation. [4]
Forming into Fibres

The bushing plate is the most important part of the machinery. This is a small metal furnace containing nozzles for the fiber to be formed through. It is almost always made of platinum alloyed with rhodium for durability. Platinum is used because the glass melt has a natural affinity for wetting it. When bushings were first used they were 100% platinum and the glass wetted the bushing so easily it ran under the plate after exiting the nozzle and accumulated on the underside. Also, due to its cost and the tendency to wear, the platinum was alloyed with rhodium. In the direct melt process, the bushing serves as a collector for the molten glass. It is heated slightly to keep the glass at the correct temperature for fiber formation. In the marble melt process, the bushing acts more like a furnace as it melts more of the material. [1]

The bushings are what make the capital investment in fiber glass production expensive. The nozzle design is also critical. The number of nozzles ranges from 200 to 4000 in multiples of 200. The important part of the nozzle in continuous filament manufacture is the thickness of its walls in the exit region. It was found that inserting a counterbore here reduced wetting. Today, the nozzles are designed to have a minimum thickness at the exit. The reason for this is that as glass flows through the nozzle it forms a drop which is suspended from the end. As it falls, it leaves a thread attached by the meniscus to the nozzle as long as the viscosity is in the correct range for fiber formation. The smaller the annular ring of the nozzle or the thinner the wall at exit, the faster the drop will form and fall away, and the lower its tendency to wet the vertical part of the nozzle. [1] The surface tension of the glass is what influences the formation of the meniscus. For E-glass it should be around 400 mN per m. [3]

The attenuation (drawing) speed is important in the nozzle design. Although slowing this speed down can make coarser fiber, it is uneconomic to run at speeds for which the nozzles were not designed. [1]

Continuous Filament Process

In the continuous filament process, after the fiber is drawn, a size is applied. This size helps protect the fiber as it is wound onto a bobbin. The particular size applied relates to end-use. While some sizes are processing aids, others make the fiber have an affinity for a certain resin, if the fiber is to be used in a composite. [4] Size is usually added at 0.5–2.0% by weight. Winding then takes place at around 1000 m per min. [2]

Staple Fiber Process

In staple fiber production, there are a number of ways to manufacture the fiber. The glass can be blown or blasted with heat or steam after exiting the formation machine. Usually these fibers are made into some sort of mat. The most common process used is the rotary process. Here, the glass enters a rotating spinner, and due to centrifugal force is thrown out horizontally. The air jets pushes it down vertically and binder is applied. Then the mat is vacuumed to a screen and the binder is cured in the oven. [5]


End uses for regular fiber glass are mats, building insulation, thermal insulation, reinforcement, heat resistant fabrics, corrosion resistant fabrics, high strength fabrics, aircraft bodies, cars and boat frames. A famous user in the UK was the Reliant Motor Company, which used fiberglass for many of its vehicles. Fiberglass is also used in orthopedic casts as an alternative to plaster casts.

See also

* Basalt fiber
* Carbon fiber
* Fiberglass molding
* Glass microsphere
* History of fiberglass
* Optical fiber

Notes and references

1. ^ a b c d e f Loewenstein, K.L. (1973). The Manufacturing Technology of Continuous Glass Fibers. New York: Elsevier Scientific, 2-94. ISBN 0-444-41109-7.
2. ^ a b c d Gupta, V.B.; V.K. Kothari (1997). Manufactured Fibre Technology. London: Chapman and Hall, 544-546. ISBN 0-412-54030-4.
3. ^ a b c d Volf, Milos B. (1990). Technical Approach to Glass. New York: Elsevier. ISBN 0-444-98805-X.
4. ^ a b c d Lubin, George (Ed.) (1975). Handbook of Fiberglass and Advanced Plastic Composites. Huntingdon NY: Robert E. Krieger.
5. ^ Mohr, J.G.; W.P. Rowe (1978). Fiberglass. Atlanta: Van Nostrand Reindhold, 13. ISBN 0-442-25447-4.


© 2005-2007 ARCHIPEDDY  ; : send email

back to home



ganjal.gif (72 bytes)